2022
DOI: 10.48550/arxiv.2202.04499
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Lightweight Jet Reconstruction and Identification as an Object Detection Task

Abstract: We apply object detection techniques based on deep convolutional blocks to end-to-end jet identification and reconstruction tasks encountered at the CERN Large Hadron Collider (LHC). Collision events produced at the LHC and represented as an image composed of calorimeter and tracker cells are given as an input to a Single Shot Detection network. The algorithm, named PFJet-SSD performs simultaneous localization, classification and regression tasks to cluster jets and reconstruct their features. This all-in-one … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 61 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?