Let X λ1 , . . . , X λn be dependent non-negative random variables and Y i = I pi X λi , i = 1, . . . , n, where I p1 , . . . , I pn are independent Bernoulli random variables independent of X λi 's, with E[I pi ] = p i , i = 1, . . . , n. In actuarial sciences, Y i corresponds to the claim amount in a portfolio of risks.In this paper, we compare the largest claim amounts of two sets of interdependent portfolios, in the sense of usual stochastic order, when the variables in one set have the parameters λ 1 , . . . , λ n and p 1 , . . . , p n and the variables in the other set have the parameters λ