Significant selenium enrichment associated with selenides and previously unknown Ag-Pb-Sb, Ag-Sb and Pb-Sb sulfosalts has been discovered in hydrothermal ore veins in the Anthony of Padua mine near Poličany, Kutná Hora ore district, central Bohemia, Czech Republic. The ore mineralogy and crystal chemistry of more than twenty silver minerals are studied here. Selenium mineralization is evidenced by a) the occurrence of selenium minerals, and b) significantly increased selenium contents in sulfosalts. Identified selenium minerals include aguilarite and selenides naumannite and clausthalite. The previously unknown sulfosalts from Kutná Hora are identified: Ag-excess fizélyite, fizélyite, andorite IV, andorite VI, unnamed Ag-poor Ag-Pb-Sb sulfosalts, semseyite, stephanite, polybasite, unnamed Ag-Cu-S mineral phases and uytenbogaardtite. Among the newly identified sulfides is argyrodite; germanium is a new chemical element in geochemistry of Kutná Hora. Three types of ore were recognized in the vein assemblage: the Pb-rich black ore (i) in quartz; the Ag-rich red ore (ii) in kutnohorite-quartz gangue; and the Ag-rich ore (iii) in milky quartz without sulfides. The general succession scheme runs for the Pb-rich black ore (i) as follows: galena – boulangerite (– jamesonite) – owyheeite – fizélyite – Ag-exces fizélyite – andorite IV – andorite VI – freieslebenite – diaphorite – miargyrite – freibergite. For the Ag-rich red ore (ii) and ore (iii) the most prominent pattern is: galena – diaphorite – freibergite – miargyrite – pyragyrite – stephanite – polybasite – acanthite. The parallel succession scheme progresses from Se-poor to Se-rich phases, i.e., galena – members of galena – clausthalite solid solution – clausthalite; miargyrite – Se-rich miargyrite; acanthite – aguilarite – naumannite. A likely source of selenium is in the serpentinized ultrabasic bodies, known in the area of “silver” lodes in the South of the ore district, which may enable to pre-concentrate selenium, released into hydrothermal fluids during tectonic events. The origin of the studied ore mineralization is primarily bound to the youngest stage of mineralization of the whole ore district, corresponding to the Ag-Sb sequence of the ´eb´ ore type of the Freiberg ore district in Saxony (Germany) and shows mineralogical and geochemical similarities to low-sulfidation epithermal-style Ag-Au mineralization.