The LIM domain family genes play a crucial role in various tumors, including non-small-cell lung cancer (NSCLC). Immunotherapy is one of the most significant treatments for NSCLC, and its effectiveness largely depends on the tumor microenvironment (TME). Currently, the potential roles of LIM domain family genes in the TME of NSCLC remain elusive. We comprehensively evaluated the expression and mutation patterns of 47 LIM domain family genes in 1089 NSCLC samples. Using unsupervised clustering analysis, we classified patients with NSCLC into two distinct gene clusters, i.e., the LIM-high group and the LIM-low group. We further investigated the prognosis, TME cell infiltration characteristics, and immunotherapy in the two groups. The LIM-high and LIM-low groups had different biological processes and prognoses. Moreover, there were significant differences in TME characteristics between the LIM-high and LIM-low groups. Specifically, enhanced survival, immune cell activation, and high tumor purity were demonstrated in patients of the LIM-low group, implying an immune-inflamed phenotype. Moreover, the LIM-low group had higher immune cell proportion scores than the LIM-high group and was more responsive to immunotherapy than the LIM-low group. Additionally, we screened out LIM and senescent cell antigen-like domain 1 (LIMS1) as a hub gene of the LIM domain family via five different algorithms of plug-in cytoHubba and the weighted gene co-expression network analysis. Subsequently, proliferation, migration, and invasion assays demonstrated that LIMS1 acts as a pro-tumor gene that promotes the invasion and progression of NSCLC cell lines. This is the first study to reveal a novel LIM domain family gene-related molecular pattern associated with the TME phenotype, which would increase our understanding of the heterogeneity and plasticity of the TME in NSCLC. LIMS1 may serve as a potential therapeutic target for NSCLC.