.The ARCSTONE project objective is to acquire accurate measurements of the spectral lunar reflectance from space, allowing the Moon to be used as a high-accuracy SI-traceable calibration reference by spaceborne sensors in low-Earth and geostationary orbits. The required spectral range is 350 to 2300 nm with 4-nm sampling. The ARCSTONE approach is to measure solar and lunar spectral irradiances with a single set of optics and determine spectrally resolved lunar reflectances via a direct ratioing method, eliminating long-term optical degradation effects. Lunar-irradiance values, derived from these direct reflectance measurements, are enabled by independently measured SI-traceable spectral solar irradiances, essentially using the Sun as an on-orbit calibration reference. In an initial attempt to demonstrate this approach, a prototype ultraviolet-visible-near infrared (348 to 910 nm) instrument was designed, fully assembled, characterized, and field tested. Our results demonstrate that this prototype ARCSTONE instrument provides a dynamic range larger than 106, which is necessary to directly measure both the solar and lunar signals, and suggest uncertainties better than 0.5% (k = 1) in measuring lunar spectra can be achieved under proper operational scenarios. We present the design, characterization, and proof-of-concept field-test of the ARCSTONE instrument prototype.