2003
DOI: 10.1515/156939203322733282
|View full text |Cite
|
Sign up to set email alerts
|

Limit theorems and testing hypotheses on Markov chains

Abstract: We consider the optimal tests based on the likelihood ratio for discriminating between two Markov chains having a common nite phase space 6. Their risks are expressed in terms of probabilities of large deviations for sum of random variables de ned on another Markov chain with the phase space 6 £ 6. Both simple and composite alternatives are considered. The established asymptotic formulas for the considered risks are precise.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
3

Year Published

2003
2003
2008
2008

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(5 citation statements)
references
References 7 publications
0
2
0
3
Order By: Relevance
“…As it is known (e.g. [7,Subsection 3.2.2], [8,Section 8.3]), the density corresponding to this measure, with respect to that generated by the standard normal distribution, is given as follows:…”
Section: Accepted Manuscriptmentioning
confidence: 99%
“…As it is known (e.g. [7,Subsection 3.2.2], [8,Section 8.3]), the density corresponding to this measure, with respect to that generated by the standard normal distribution, is given as follows:…”
Section: Accepted Manuscriptmentioning
confidence: 99%
“…Заключительные замечания составляют содержание последнего шестого раздела. f Й(0) = й {1 \ й(1) = й (1) , 0(0) = 0 (2) , 0(1) = 0 (1) , где и (| \ i/ f) и й ( '\ 0 (|) -собственные векторы Я (|) и Р^1\ соответственно. Вспомним, что 0£ '($) является k-й компонентой вектора 0 (2) (s).…”
Section: рисков в отличие от так называемой грубой или иначе слабоunclassified
“…Вспомним, что 0£ '($) является k-й компонентой вектора 0 (2) (s). Заметим, что £ (2) (1) = р(». тогда из леммы 1 следует, что где и (1) -правый собственный вектор матрицы Р (1) .…”
Section: рисков в отличие от так называемой грубой или иначе слабоunclassified
See 1 more Smart Citation
“…It is known (e.g. [9, Subsection 3.2.2], [12,Section 8.3]) that the density corresponding to this measure, with respect to that generated by N (0, 1) distribution, is given as follows:…”
mentioning
confidence: 99%