Frequency-dependent electrical conductivities of solutions of aqueous strontium hydroxide and strontium chloride have been measured from T = 295 K to T = 625 K at p = 20 MPa, over a very wide range of ionic strength (3 × 10(-5) to 0.2 mol kg(-1)), using a high-precision flow AC conductivity instrument. Experimental values for the concentration-dependent equivalent conductivity, Λ, of the two electrolytes were fitted with the Turq-Blum-Bernard-Kunz ("TBBK") ionic conductivity model, to determine ionic association constants, K(A,m). The TBBK fits yielded statistically significant formation constants for the species SrOH(+) and SrCl(+) at all temperatures, and for Sr(OH)2(0) and SrCl2(0) at temperatures above 446 K. The first and second stepwise association constants for the ion pairs followed the order K(A1)(SrOH(+)) > K(A1)(SrCl(+)) > K(A2)[Sr(OH)2(0)] > K(A2)[SrCl2(0)], consistent with long-range solvent polarization effects associated with the lower static dielectric constant and high compressibility of water at elevated temperatures. The stepwise association constants to form SrCl(+) agree with previously reported values for CaCl(+) to within the combined experimental error at high temperatures and, at temperatures below ∼375 K, the values of log10 KA1 for strontium are lower than those for calcium by up to ∼0.3-0.4 units. The association constants for the species SrOH(+) and Sr(OH)2(0) are the first accurate values to be reported for hydroxide ion pairs with any divalent cation under these conditions.