Synopsis:The large scale use of superconductivity continues to be dominated by applications for which there is generally no conventional option. In these cases, superconductivity has enabled new science and technology that could not exist without it. Thanks to persistent ongoing research, new ancillary technology and the development of new materials, the field is far from exhausted. The fields of fusion energy and high energy physics (HEP) have particularly benefited from the application of superconductivity. High magnetic fields are absolutely necessary to achieve the required performance parameters. Even though superconductivity is an enabling technology for these fields, it comes with a number of challenges. The progress in development of applications is driven from one side by the available materials and on the other, by the evolution, or sometimes revolution, in ancillary technologies. Technology for use in both fusion and accelerator magnets begins with the same materials and inherent constraints, yet results in substantially different configurations and unique challenges due to the operational requirements for the respective applications. This paper presents a comparison of the technology developed by the fusion and high energy physics programs, both the similarities and the differences, and prospects for future development.