miR-155 is a regulator of immune cell development and function that is generally thought to be immunostimulatory. However, we report here that genetic ablation of miR-155 renders mice resistant to chemical carcinogenesis and the growth of several transplanted tumors, suggesting that miR-155 functions in immunosuppression and tumor promotion. Host miR-155 deficiency promoted overall antitumor immunity despite the finding of defective responses of miR-155-deficient dendritic cells and antitumor T cells. Further analysis of immune cell compartments revealed that miR-155 regulated the accumulation of functional myeloid-derived suppressive cells (MDSC) in the tumor microenvironment. Specifically, miR-155 mediated MDSC suppressor activity through at least two mechanisms, including SOCS1 repression and a reduced ability to license the generation of CD4+Foxp3+ regulatory T cells (Treg). Importantly, we demonstrated that miR-155 expression was required for MDSC to facilitate tumor growth. Thus, our results revealed a contextual function for miR-155 in antitumor immunity, with a role in MDSC support that appears to dominate in tumor-bearing hosts. Overall, the balance of these cellular effects appears to be a root determinant of whether miR-155 promotes or inhibits tumor growth.