A mother's ability to produce a nutritionally-complete neonatal food source has provided a powerful evolutionary advantage to mammals. Milk production by secretory mammary epithelial cells is adaptive, its release is exquisitely timed and its own glandular stagnation with the permanent cessation of suckling triggers the programmed cell death and tissue remodeling that enables female mammals to nurse successive progeny. Both chemical and mechanical signals control epithelial expansion, function and remodeling. Despite this duality of input, however, the nature and function of mechanical forces in the mammary gland remain unknown. Here, we characterize the mammary force landscape and the capacity of luminal and basal epithelial cells to Short title: The mechanics of milk production experience and exert force. We explore the molecular instruments for force-sensing in the mammary gland and the physiological requirement for PIEZO1 in lactation and involution. Our study supports the existence of a multifaceted system of chemical and mechanical sensing in the mammary gland, and a protective redundancy that ensures continued lactational competence and offspring survival.