Cardiovascular disease has been the leading cause of mortality and morbidity worldwide in the past 3 decades. Multiple cell lineages undergo dynamic alternations in gene expression, cell state determination, and cell fate conversion to contribute, adapt, and even modulate the pathophysiological processes during disease progression. There is an urgent need to understand the intricate cellular and molecular underpinnings of cardiovascular cell development in homeostasis and pathogenesis. Recent strides in lineage tracing methodologies have revolutionized our understanding of cardiovascular biology with the identification of new cellular origins, fates, plasticity, and heterogeneity within the cardiomyocyte, endothelial, and mesenchymal cell populations. In this review, we introduce the new technologies for lineage tracing of cardiovascular cells and summarize their applications in studying cardiovascular development, diseases, repair, and regeneration.