Dendrimer molecules and aggregates are chemical structures with regular branching that underlies their physicochemical properties. Regular dendrimers have been studied both theoretically and experimentally, but the irregular intermediate structures between the dendrimers of neighboring generations have not. In the present work, dendrimer aggregates, both regular and intermediate, are investigated in terms of the information entropy approach. As found, the information entropy of the regular dendrimer asymptotically increases with the generation number; herewith, its maximal value equals 2. The intermediate structures have been studied for the growing dendrimer G1 → G2 → G3 → G4 with the tricoordinated building block. The plot of the information entropy of the growing dendrimer on the size has the frontier consisting of the lowest values that correspond to the regular and irregular structures described with the symmetrical graphs. Other intermediate structures have information entropies higher than the regular dendrimers. Thus, to move the system from one informationally stable state to another, its information capacity must be temporarily increased.