Proper gas cell stability during fermentation and baking is essential to obtain high‐quality bread. Gas cells in wheat dough are stabilized by the gluten network formed during kneading and, from the moment this network locally ruptures, by liquid films containing nonstarch polysaccharides (NSPs) and surface‐active proteins and lipids. Dough liquor (DL), the supernatant after ultracentrifugation of dough, is a model system for these liquid films and has been extensively studied mostly in the context of wheat bread making. Nonwheat breads are often of lower quality (loaf volume and crumb structure) than wheat breads because their doughs/batters lack a viscoelastic wheat gluten network. Therefore, gas cell stabilization by liquid film constituents may be more important in nonwheat than in wheat bread making. This manuscript aims to review the knowledge on DL/batter liquor (BL) and its relevance for studying gas cell stabilization in wheat and nonwheat (rye and oat) bread making. To this end, the unit operations in wheat, rye, and oat bread making are described with emphasis on gas incorporation and gas cell (de)stabilization. A discussion of the knowledge on the recoveries and chemical structures of proteins, lipids, and NSPs in DLs/BLs is provided and key findings of studies dealing with foaming and air–water interfacial properties of DL/BL are discussed. Next, the extent to which DL/BL functionality can be related to bread properties is addressed. Finally, the extent to which DL/BL is a representative model system for the aqueous phase of dough/batter is discussed and related to knowledge gaps and further research opportunities.