Multilevel programming is developed to solve the decentralized problem in which decision makers (DMs) are often arranged within a hierarchical administrative structure. The linear bilevel programming (BLP) problem, i.e., a special case of multilevel programming problems with a two level structure, is a set of nested linear optimization problems over polyhedral set of constraints. Two DMs are located at the different hierarchical levels, both controlling one set of decision variables independently, with different and perhaps conflicting objective functions. One of the interesting features of the linear BLP problem is that its solution may not be Paretooptimal. There may exist a feasible solution where one or both levels may increase their objective values without decreasing the objective value of any level. The result from such a system may be economically inadmissible. If the decision makers of the two levels are willing to find an efficient compromise solution, we propose a solution procedure which can generate effcient solutions, without finding the optimal solution in advance. When the near-optimal solution of the BLP problem is used as the reference point for finding the efficient solution, the result can be easily found during the decision process.