Intelligent underwater vehicles hover by way of a hovering control system. To provide design inputs and maneuver guidance, this study focused on the characteristics of intelligent underwater vehicles during hovering control with the propulsion system shut down, established a mathematical model of hovering control and determined injection and drainage functions based on optimal control theory. From analysis simulation experiments, the influence laws of control parameters, control timing and rate of injection and drainage control upon hovering control were deduced. It is proposed that, at the time of control parameter selection, the continuous injection and drainage rate at each time should be reduced as far as possible to relieve the demand on the volume of the reservoir when the requirement of depth control accuracy has been satisfied. In addition, the injection and drainage control should initiate when depth changes exceed 0.5 m. Suggestions are included on the minimum injection and drainage rate required for different initial disturbances. The proposed suggestions guide the design of hovering control systems and hovering control over intelligent underwater vehicles.