2021
DOI: 10.48550/arxiv.2103.12564
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Linear Constraints Learning for Spiking Neurons

Abstract: Encoding information with precise spike timings using spike-coded neurons has been shown to be more computationally powerful than rate-coded approaches. However, most existing supervised learning algorithms for spiking neurons are complicated and offer poor time complexity. To address these limitations, we propose a supervised multi-spike learning algorithm which reduces the required number of training iterations. We achieve this by formulating a large number of weight updates as a linear constraint satisfacti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 48 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?