2021
DOI: 10.48550/arxiv.2103.03377
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Linear Depth Deduction with Subformula Property for Intuitionistic Epistemic Logic

Abstract: In their seminal paper Artemov and Protopopescu provide Hilbert formal systems, Brower-Heyting-Kolmogorov and Kripke semantics for the logics of intuitionistic belief and knowledge. Subsequently Krupski has proved that the logic of intuitionistic knowledge is PSPACE-complete and Su and Sano have provided calculi enjoying the subformula property. This paper continues the investigations around to sequent calculi for Intuitionistic Epistemic Logics by providing sequent calculi that have the subformula property an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?