2022
DOI: 10.1007/s00229-022-01432-9
|View full text |Cite
|
Sign up to set email alerts
|

Linear isoperimetric inequalities for free boundary submanifolds in a geodesic ball

Abstract: We derive linear isoperimetric inequalities for free boundary submanifolds in a geodesic ball of a Riemannian manifold in terms of the modified volume. It is known that the twice of the area of a free boundary minimal surface in a Euclidean unit ball is equal to the length of its boundary. This can be extended to space forms by using our linear isoperimetric inequalities for the modified volume. Moreover, we obtain a sharp lower bound for the modified volume of free boundary minimal surfaces in a geodesic ball… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?