2023
DOI: 10.1007/s10773-023-05282-3
|View full text |Cite
|
Sign up to set email alerts
|

Linear Orthosets and Orthogeometries

Abstract: Anisotropic Hermitian spaces can be characterised as anisotropic orthogeometries, that is, as projective spaces that are additionally endowed with a suitable orthogonality relation. But linear dependence is uniquely determined by the orthogonality relation and hence it makes sense to investigate solely the latter. It turns out that by means of orthosets, which are structures based on a symmetric, irreflexive binary relation, we can achieve a quite compact description of the inner-product spaces under considera… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 15 publications
0
0
0
Order By: Relevance