In this paper, genetic algorithm (GA) based multi-objective optimization technique is presented to search optimum weighting matrix parameters of linear quadratic regulator (LQR). Macpherson strut suspension system is implemented for study. GA is implemented to minimize vibration dose values (VDV), RMS sprung mass acceleration, sprung mass displacement and suspension working space. Constraints are put on RMS sprung mass acceleration, maximum sprung mass acceleration, tyre deflection, unsprung mass displacement and RMS control force. Passive suspension system and LQR control active suspension system are simulated in time domain. Results are compared using class E road and vehicle speed 80 kmph. For step response, GA based LQR control system is having minimum oscillations with good ride comfort. VDV is reduced by 16.54%, 40.79% and 67.34% for Case I, II and III respectively. Same trend is observed for RMS sprung mass acceleration. Pareto-front gives more flexibility to choose optimum solution as per designer's need.