The spinning drop tensiometry is used for measurements of surface tension coefficients, especially, when interfaces are characterised by low and ultra-low interfacial stresses. A droplet of lighter liquid is introduced into a rotating capillary that was initially saturated with another heavier liquid. The tube is subject to axial rotation that results in droplet's elongation along the tube's axis. The equilibrium shape of the droplet is used to determine the surface tension coefficient. In this work, the evolution of a slowly miscible droplet introduced into a spinning capillary is investigated. This technique is frequently employed for studies of the dynamics of miscible systems, even despite the fact that a strict equilibrium is never achieved in a mixture of fully miscible liquids. The numerical modelling of a miscible droplet is fulfilled on the basis of the phase-field (Cahn-Hilliard) approach. The numerical results are compared against the experimental data pursuing two objectives: (i) to verify the use of the phase-field approach as a consistent physics-based approach capable of accurate tracking of the short-and long-term evolution of miscible systems, and (ii) to estimate the values of the phenomenological parameters introduced within the phase-field approach, so making this approach a practical tool for modelling of thermohydrodynamic changes in miscible systems within various configurations.