2015
DOI: 10.1016/j.spasta.2015.10.003
|View full text |Cite
|
Sign up to set email alerts
|

Linear street extraction using a Conditional Random Field model

Abstract: A novel method for extracting linear streets from a street network is proposed where a linear street is defined as a sequence of connected street segments having a shape similar to a straight line segment. Specifically a given street network is modeled as a Conditional Random Field (CRF) where the task of extracting linear streets corresponds to performing learning and inference with respect to this model. The energy function of the proposed CRF model is submodular and consequently exact inference can be perfo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2016
2016
2019
2019

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 36 publications
0
0
0
Order By: Relevance