The problems of determining minimum identifying, locating-dominating or open locating-dominating codes are special search problems that are challenging both from a theoretical and a computational point of view. Hence, a typical line of attack for these problems is to determine lower and upper bounds for minimum codes in special graphs. In this work we study the problem of determining the cardinality of minimum codes in block graphs (that are diamond-free chordal graphs). We present for all three codes lower and upper bounds as well as block graphs where these bounds are attained.