Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.
NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.
NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=92702cb8-7f36-4bb0-a005-f40dbc654608 http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=92702cb8-7f36-4bb0-a005-f40dbc654608
Density Functional Theory Study of Transitional Metal Macrocyclic Complexes' Dioxygen-Binding Abilities and Their Catalytic Activities toward Oxygen Reduction ReactionZheng Shi and Jiujun Zhang* National Research Council Institute for Fuel Cell InnoVation, 4250 Wesbrook Mall, VancouVer, BC, Canada V6T 1W5 ReceiVed: October 31, 2006; In Final Form: March 23, 2007 In this paper, density functional theory method is applied to study the dioxygen-binding abilities of transition metal macrocyclic complexes and their electrocatalytic activities toward oxygen reduction reaction. Both end-on and side-on binding modes are examined. Electronic properties, such as ionization potential and Mulliken charge, are evaluated. The effects of central metal, ligand, and substituents on catalyst's dioxygen-binding ability and catalytic activity are investigated. The binding nature of dioxygen adduct is analyzed based on structure property. The general activity trend observed for phthalocyanines and porphyrins is rationalized with the calculated properties. It is illustrated that the catalyst's oxygen reduction activity is related to its ionization potential and dioxygen-binding ability. Cobalt porphyrin derivatives have high ionization potentials, which make them better catalysts than the corresponding iron derivatives, whereas for phthalocyanine systems, iron derivatives have large ionization potential and better dioxygen-binding ability, which make them good catalysts.