Abstract:We analyse nonlinear second-order differential equations in terms of algebraic properties by reducing a nonlinear partial differential equation to a nonlinear second-order ordinary differential equation via the point symmetry f(v)∂v. The eight Lie point symmetries obtained for the second-order ordinary differential equation is of maximal number and a representation of the sl(3,R) algebra. We extend this analysis to a more general nonlinear second-order differential equation and we obtain similar interesting al… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.