2013
DOI: 10.1016/j.physd.2012.08.017
|View full text |Cite
|
Sign up to set email alerts
|

Linearization in the large of nonlinear systems and Koopman operator spectrum

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

4
151
0
1

Year Published

2013
2013
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 166 publications
(156 citation statements)
references
References 20 publications
4
151
0
1
Order By: Relevance
“…Any subset of eigenfunctions of the Koopman operator form an invariant subspace, by definition. However, these eigenfunctions may be arbitrarily complex, as they are intricately related to the phase space geometry of the dynamical system [120][121][122]. Similar to DMD, we would like the Koopman-invariant subspaces to include the state variables x directly as observables.…”
Section: Method: Koopman Observable Subspaces Containing the Statementioning
confidence: 99%
“…Any subset of eigenfunctions of the Koopman operator form an invariant subspace, by definition. However, these eigenfunctions may be arbitrarily complex, as they are intricately related to the phase space geometry of the dynamical system [120][121][122]. Similar to DMD, we would like the Koopman-invariant subspaces to include the state variables x directly as observables.…”
Section: Method: Koopman Observable Subspaces Containing the Statementioning
confidence: 99%
“…They are either empty with most of the types of attractors (fixed point, limit cycle, quasiperiodic tori, see e.g. [3], [4], [6], [9]) in well-chosen spaces of observables, or they correspond to the asymptotic ergodic dynamics on (strange) attractors, therefore carrying no information on stability.…”
Section: Spectral Analysismentioning
confidence: 99%
“…For instance, they define new coordinates z i = φ λ * i (x) associated with linear dynamicsż i = λ * i z i [6] and are therefore related to the rate of convergence of the trajectories. In particular, the level sets of the eigenfunction φ λ * 1 correspond to the notion of isostables defined in [9]: they are the sets of points that converge "synchronously" toward the fixed point.…”
Section: ) Lyapunov Functions and Contracting Metricsmentioning
confidence: 99%
See 1 more Smart Citation
“…С формальной точки зрения, DMD служит методом построения аппроксимации оператора Купмана [12,13], который является линейным оператором, описывающим динамику системы в некотором пространстве наблюдаемых (нелинейных функций динамических переменных). Оператор Купмана тесно связан (сопряжен) с оператором Перрона-Фробениуса (пропагатором обобщенного уравнения Лиувилля), описывающим линейную динамику плотности вероятности [14][15][16][17][18][19].…”
Section: Introductionunclassified