In recent years, researchers from academic and industrial fields have become increasingly interested in social network data to extract meaningful information. This information is used in applications such as link prediction between people groups, community detection, protein module identification, etc. Therefore, the clustering technique has emerged as a solution to finding similarities between social network members. Recently, in most graph clustering solutions, the structural similarity of nodes is combined with their attribute similarity. The results of these solutions indicate that the graph's topological structure is more important. Since most social networks are sparse, these solutions often suffer from insufficient use of node features. This paper proposes a hybrid clustering approach for link prediction in heterogeneous information networks (HINs). In our approach, an adjacency vector is determined for each node until, in this vector, the weight of the direct edge or the weight of the shortest communication path among every pair of nodes is considered. A similarity metric is presented that calculates similarity using the direct edge weight between two nodes and the correlation between their adjacency vectors. Finally, we evaluated the effectiveness of our proposed method using DBLP and Political blogs datasets under entropy, density, purity, and execution time metrics. The simulation results demonstrate that while maintaining the cluster density significantly reduces the entropy and the execution time compared with the other methods.