␣ 1 -Adrenergic receptors (␣ 1A , ␣ 1B , and ␣ 1D ) are regulators of systemic arterial blood pressure and blood flow. Whereas vasoconstrictory action of the ␣ 1A and ␣ 1D subtypes is thought to be mainly responsible for this activity, the role of the ␣ 1B -adrenergic receptor (␣ 1B AR) in this process is controversial. We have generated transgenic mice that overexpress either wild type or constitutively active ␣ 1B ARs. Transgenic expression was under the control of the isogenic promoter, thus assuring appropriate developmental and tissue-specific expression. Cardiovascular phenotypes displayed by transgenic mice included myocardial hypertrophy and hypotension. Indicative of cardiac hypertrophy, transgenic mice displayed an increased heart to body weight ratio, which was confirmed by the echocardiographic finding of an increased thickness of the interventricular septum and posterior wall. Functional deficits included an increased isovolumetric relaxation time, a decreased heart rate, and cardiac output. Transgenic mice were hypotensive and exhibited a decreased pressor response. Vasoconstrictory regulation by ␣ 1B AR was absent as shown by the lack of phenylephrine-induced contractile differences between ex vivo mesenteric artery preparations. Plasma epinephrine, norepinephrine, and cortisol levels were also reduced in transgenic mice, suggesting a loss of sympathetic nerve activity. Reduced catecholamine levels together with basal hypotension, bradycardia, reproductive problems, and weight loss suggest autonomic failure, a phenotype that is consistent with the multiple system atrophy-like neurodegeneration that has been reported previously in these mice. These results also suggest that this receptor subtype is not involved in the classic vasoconstrictory action of ␣ 1 ARs that is important in systemic regulation of blood pressure.The adrenergic receptor family, which includes 3 ␣ 1 , 3 ␣ 2 , and 3 -receptor subtypes, is a group of heptahelical G proteincoupled receptors that mediate the effects of the sympathetic nervous system. Extensive effort has been spent in classifying the three known ␣ 1 -adrenergic receptor (␣ 1 AR) 1 subtypes (␣ 1A , ␣ 1B , and ␣ 1D ) via molecular cloning techniques (1-4) and pharmacological analyses (5). The most well characterized cardiovascular regulatory actions associated with ␣ 1 AR activation include the contraction, growth and proliferation of vascular smooth muscle cells (6 -9), increased cardiac contractility (10), and regulation of the hypertrophic program in the myocardium (11,12). In other ␣ 1 AR-expressing tissues such as liver and kidney, the function of these receptors is to regulate metabolic processes (13) and sodium and water reabsorption (14), respectively. These responses are transduced primarily via receptor coupling to the G q /phospholipase C pathway (5), which leads to the subsequent activation of downstream signaling molecules including protein kinase C and inositol 1,4,5-trisphosphate.The progress toward elucidating the distinct regulatory role of each ␣ 1...