Osteoporosis is a common disease with a strong genetic component characterised by reduced bone mass and an increased risk of fragility fractures. Twin and family studies have shown that genetic factors contribute to osteoporosis by influencing bone mineral density (BMD), and other phenotypes that are associated with fracture risk, although the heritability of fracture itself is modest. Linkage studies have identified several quantitative trait loci that regulate BMD but most causal genes remain to be identified. In contrast, linkage studies in monogenic bone diseases have been successful in gene identification, and polymorphisms in many of these genes have been found to contribute to the regulation of bone mass in the normal population. Population-based studies have identified polymorphisms in several candidate genes that have been associated with bone mass or osteoporotic fracture, although individually these polymorphisms only account for a small amount of the genetic contribution to BMD regulation. Environmental factors such as diet and physical activity are also important determinants of BMD, and in some cases specific nutrients have been found to interact with genetic polymorphisms to regulate BMD. From a clinical standpoint, advances in knowledge about the genetic basis of osteoporosis are likely to be important in increasing the understanding of the pathophysiology of the disease; providing new genetic markers with which to assess fracture risk and in identifying genes and pathways that form molecular targets for the design of the next generation of drug treatments.