A variety of criteria may influence the efficacy of networks of marine protected areas (MPA) designed to enhance biodiversity conservation and provide fisheries benefits. Meta‐analyses have evaluated the influence of MPA attributes on abundance, biomass, and size structure of harvested species, reporting that MPA size, age, depth, and connectivity influence the strength of MPA responses. However, few empirical MPA evaluation studies have used consistent sampling methodology across multiple MPAs and years. Our collaborative fisheries research program systematically sampled 12 no‐take or highly protective limited‐take MPAs and paired fished reference areas across a network spanning 1100 km of coastline to evaluate the factors driving MPA efficacy across a large geographic region. We found that increased size and age consistently contributed to increased fish catch, biomass, and positive species responses inside MPAs, while accounting for factors such as latitude, primary productivity, and distance to the nearest MPA. Our study provides a model framework to collaboratively engage diverse stakeholders in fisheries research and provide high‐quality data to assess the success of conservation strategies.