The simultaneous and coupled evolution of horizontal branch oscillation (HBO) and normal branch oscillation (NBO) in Z-type sources suggests that the production of HBO is connected to NBO and is caused by changes in the physical/radiative properties of the inner accretion disk, although there is a lack of substantial spectral evidence to support this. In this Letter, we present the results of an analysis of an RXTE observation of the Z source GX 5-1, where the 6 Hz NBO is simultaneously detected along with an HBO at 51 Hz. The variations in the intensity and the associated power density spectrum indicate that the HBO and NBO are strongly coupled, originating from the same location in the inner accretion disk. The absence of HBO and NBO in the lower energy bands, an increase in the rms amplitude with energy, and a smooth transition among them suggest that they are produced in the hot inner regions of the accretion disk. Based on a spectral analysis, we found a signature of changing or physically modified inner disk front during the coupled HBO and NBO evolution. We explore the various models to explain the observed phenomenon and propose that the NBO is affiliated to the oscillations in the thick/puffed-up inner region of the accretion disk.