2020
DOI: 10.1101/2020.10.15.20213090
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Linking microstructural integrity and motor cortex excitability in multiple sclerosis

Abstract: Motor skills are frequently impaired in multiple sclerosis (MS) patients following grey (GM) and white matter (WM) damage with cortical excitability abnormalities. We performed advanced diffusion imaging for neurite orientation dispersion and density modeling and diffusion tensor imaging within the motor system of 50 MS patients and 49 age-matched healthy controls. To assess excitability, we determined resting motor thresholds using non-invasive transcranial magnetic stimulation. A hierarchical regression mode… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 72 publications
(132 reference statements)
0
1
0
Order By: Relevance
“…To provide valuable insights into the likely nature of these abnormalities, we applied the NODDI analysis method. Advanced biophysical imaging models are used to forecast neurodegeneration and excitability alterations in neuroinflammation (53). NODDI offered a more significant tissue characterization of microstructure abnormalities in the morphology of neuritis.…”
Section: Figure 4 | (A)mentioning
confidence: 99%
“…To provide valuable insights into the likely nature of these abnormalities, we applied the NODDI analysis method. Advanced biophysical imaging models are used to forecast neurodegeneration and excitability alterations in neuroinflammation (53). NODDI offered a more significant tissue characterization of microstructure abnormalities in the morphology of neuritis.…”
Section: Figure 4 | (A)mentioning
confidence: 99%