The greenery of floodplain meadows in arid regions, such as Mongolia, is influenced by climate, hydrology, and land use. In this study, we analyzed the NDVI (Normalized Difference Vegetation Index) of two floodplain meadows located along the South Tamir and Tamir Rivers using LANDSAT images. Our goal was to observe NDVI spatial changes, variations, and mean values in mid-August every six years from 1991 to 2015 and to identify the factors driving these differences. To achieve this, we conducted variance analysis to identify changes in NDVI and implemented Principal Component Analysis to determine the influence of hydro-meteorological factors and grazing intensity. Our findings indicate a significant decrease in greenness, as measured by pixel-scale NDVI, during the late summer period. This decrease was consistently observed, except for a series of harsh winters that followed relatively dry summers, resulting in a disastrous event called dzud, which led to the death of livestock. The decrease in NDVI was amplified by lower precipitation in June, higher temperatures and wind speed in July, and increased precipitation in August, along with a higher frequency of days with convective rain. Our findings have important implications for managing grazing in Mongolia’s grasslands, promoting sustainable land use, and mitigating sandstorms. The variance and average values of NDVI at the pixel level can serve as reliable markers of sustainable pasture management in areas where other vegetation measures are limited.