The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo. We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo. The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections.
Several factors complicate the comparison of in vitro studies on Pseudomonas aeruginosa with infections in the cystic fibrosis (CF) lung. First, many different P. aeruginosa strains cause CF lung infections; thus, reliance on commonly used laboratory strains might limit our understanding of P. aeruginosa in CF (1-3). Second, laboratory or cell culture studies rarely incorporate coinfecting species and lack components of the lung environment, such as immune response factors, that shape P. aeruginosa phenotypes (4, 5). We know little about how these environmental stimuli influence P. aeruginosa (6-8). To complicate matters further, a single CF sputum sample contains mixtures of P. aeruginosa genotypes and phenotypes. A recent study has suggested that a mixture of strains influenced traits such as drug response in ways that were difficult to predict from the study of single strains (9). Clinical isolates of P. aeruginosa, even from the same respiratory sample, can have striking differences in phenotypes, including colony morphology, quorum-sensing regulation, and motili...