Abstract:We study harmonic map heat flow along ancient super Ricci flow, and derive several Liouville theorems with controlled growth from Perelman's reduced geometric viewpoint. For non-positively curved target spaces, our growth condition is sharp. For positively curved target spaces, our Liouville theorem is new even in the static case (i.e., for harmonic maps); moreover, we point out that the growth condition can be improved, and almost sharp in the static case. This fills the gap between the Liouville theorem of C… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.