<p style='text-indent:20px;'>In this paper, we prove Liouville type theorems for stable solutions to the weighted fractional Lane-Emden system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} (-\Delta)^s u = h(x)v^p,\quad (-\Delta)^s v = h(x)u^q, \quad u,v>0\quad \mbox{in }\;\mathbb{R}^N, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ 1<q\leq p $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ h $\end{document}</tex-math></inline-formula> is a positive continuous function in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula> satisfying <inline-formula><tex-math id="M4">\begin{document}$ {\liminf_{|x|\to \infty}}\frac{h(x)}{|x|^\ell} > 0 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M5">\begin{document}$ \ell > 0. $\end{document}</tex-math></inline-formula> Our results generalize the results established in [<xref ref-type="bibr" rid="b23">23</xref>] for the Laplacian case (correspond to <inline-formula><tex-math id="M6">\begin{document}$ s = 1 $\end{document}</tex-math></inline-formula>) and improve the previous work [<xref ref-type="bibr" rid="b12">12</xref>]. As a consequence, we prove classification result for stable solutions to the weighted fractional Lane-Emden equation <inline-formula><tex-math id="M7">\begin{document}$ (-\Delta)^s u = h(x)u^p $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M8">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>.</p>