2012
DOI: 10.1063/1.4753979
|View full text |Cite
|
Sign up to set email alerts
|

Liouville type theorems for nonlinear elliptic equations involving operator in divergence form

Abstract: The aim of this paper is to study the properties of the solutions of \documentclass[12pt]{minimal}\begin{document}${\rm div} (\mathcal {A}(x, \nabla u))\break +f_{1}(u)-f_{2}(u)=0$\end{document} div (A(x,∇u))+f1(u)−f2(u)=0 in all \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^{N}.$\end{document}RN. We obtain Liouville type boundedness for the solutions. We show that \documentclass[12pt]{minimal}\begin{document}$|u|\le (\frac{\alpha }{\beta })^{\frac{1}{m-q+1}}$\end{document}|u|≤(αβ)1m−q+1 on \docume… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?