This paper considers a three-dimensional nonlinear dynamical system capable of generating spherical attractors. The main activity is the realization of a spherical chaotic attractor on Intel and Xilinx FPGA boards, with a focus on implementation of a secure communication system. The first major contribution is the successful synchronization of two chaotic spherical systems, in VHDL program, in a master-slave topology using Hamiltonian forms. The synchronization errors show that the two spherical chaotic systems synchronize in a very short time after which the error signals become zero. The second major contribution is the FPGA realization of a spherical chaotic attractor-based secure communication system, which involves encrypting both grayscale and RGB images with chaos and diffusion key at the transmitting system, sending the encrypted image via the state variables, and reconstructing the encrypted image at the receiving system. The Intel Stratix III and Xilinx Artix-7 AC701 results are the same as those of MATLAB. The statistical analyses of the encrypted and received images show that the implemented system is very effective, as it reveals high degree of randomness in the encrypted images with the entropy test, and the obtained correlation coefficient, which is zero, removes relativity between the original and encrypted images. Finally, the transmission system fully recovers the original grayscale and RGB images without loss of information.