Toxoplasma gondii is a parasitic protist possessing a limited set of proteins involved in the autophagy pathway, a self-degradative machinery for protein and organelle recycling. This distant eukaryote has even repurposed part of this machinery, centered on protein ATG8, for a non-degradative function related to the maintenance of the apicoplast, a parasite-specific organelle. However, some evidence also suggest Toxoplasma is able to generate autophagic vesicles upon stress, and that some autophagy-related proteins, such as ATG9, might be involved solely in the canonical autophagy function. Here, we have characterised two Toxoplasma proteins containing WD-40 repeat that can bind lipids for their recruitment to vesicular structures upon stress. They belong to the PROPPIN family and are homologues to ATG18/WIPI, which are known to be important for the autophagic process. We conducted a functional analysis of these two Toxoplasma PROPPINs. One of them is dispensable for normal in vitro growth, although it may play a role for parasite survival in specific stress conditions or for parasite fitness in the host, through a canonical autophagy-related function. The other, however, seems important for parasite viability in normal growth conditions and could be primarily involved in a non-canonical function. These divergent roles for two proteins from the same family illustrate the functional versatility of the autophagy-related machinery in Toxoplasma.