Entomopathogenic fungi (EPF) are microorganisms that cause fatal diseases of arthropods. The infection process involves several stages that consist of direct contact of the fungus with the surface of the cuticle of the attacked insect. The factors that determine the effectiveness of the infection process include lytic enzymes, secondary metabolites, and adhesins produced by EPF. Because of their high insecticidal effectiveness, these fungi are commonly used as biopesticides in organic farming. As the environment and farmlands are contaminated with many compounds of anthropogenic origin (e.g., pesticides), the effects of these toxic compounds on EPF and the mechanisms that affect their survival in such a toxic environment have been studied in recent years. This review presents information on the capacity of EPF to remove toxic contaminants, including alkylphenols, organotin compounds, synthetic estrogens, pesticides and hydrocarbons. Moreover, these fungi produce numerous secondary metabolites that can be potentially used in medicine or as antimicrobial agents. Despite their huge potential in biocontrol processes, the use of EPF has been underestimated due to a lack of knowledge on their abilities. In our work, we have presented the available data on the possibilities of the additional and unconventional use of these microorganisms.