Background
Respiratory Syncytial Virus (RSV) stands out as a primary contributor to lower respiratory tract infections and hospitalizations, particularly in infants. Lonicerae japonicae flos (LJF), a traditional Chinese medicine renowned for its efficacy against various viral infections, including RSV, has been widely employed. Despite its common use, the precise therapeutic mechanism of LJF against RSV remains elusive. This study aimed to investigate the underlying mechanism of LJF against RSV through network pharmacology and metabolomics.
Methods
In this study, based on network pharmacology, potential targets related to LJF and RSV were obtained from PubChem and Swiss Target Prediction. The core targets and pathways were established and verified by enrichment analysis and molecular docking. The anti-RSV efficacy of LJF was determined by in vitro experiments. Additionally, metabolomics analysis was integrated, allowing for the identification of differential metabolites and their correlation with targets following LJF treatment in the context of RSV infection.
Results
A total of 23 active ingredients and 780 targets were obtained, of which 102 targets were associated with LJF anti-RSV. The construction of the corresponding Protein–Protein Interaction (PPI) network unveiled potential core targets, including STAT3, TNF, and AKT1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that LJF's anti-RSV effects primarily involve key pathways such as the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, and FoxO signaling pathway. Molecular docking showed that ZINC03978781, 4,5'-Retro-.beta.,.beta.-Carotene -3,3'-dione, 4',5'-didehydro and 7-epi-Vogeloside had better binding ability. The cellular assay showed that the therapeutic index of LJF against RSV was 4.79. Furthermore, 18 metabolites were screened as potential biomarkers of LJF against RSV, and these metabolites were mainly involved in the pathways of purine metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, and other related pathways.
Conclusions
The intergration of network pharmacology and metabolomics can clarify the active targets and related pathways of LJF against RSV, which could provide a valuable reference for further research and clinical application of LJF.