Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Great advances in lipidomics during the last years have opened the door to a broader knowledge of oxygenated lipids. These substances are derived either from the inclusion of previously hydroxylated fatty acids in the lipid structure of sphingolipids and acyl-L-carnitines, or by enzymatic and nonenzymatic modifications (oxidized lipids) of glycerophospholipids (including cardiolipins), cholesteryl esters and cholesterol. Despite their significance in the regulation of multiple diseases such as cancer or diabetes, the number of experimentally detected oxygenated lipids remains relatively low. This is in part due to the main challenges in their analysis, which are their low natural concentrations, their wide diversity of physicochemical properties, presence of isomers, and their a priori unknown presence in the biological samples. In particular, analysis of oxidized lipids, especially peroxides, has become a daunting task in liquid chromatography coupled to mass spectrometry (LC-MS) due to their high chemical and thermal instability, and the potential for further propagation of lipid oxidation and eventual degradation. The aim of this review is to highlight the experimental conditions on sample preparation procedures, the LC-MS based analytical approaches for identification and quantification of oxygenated lipids, and their relation as potential biomarkers in diseases based on the most relevant articles published in the last five years. Regarding sample preparation, special attention has been given to antioxidants, internal standards, extraction and concentration methods, and derivatization approaches. Moreover, targeted, semi-targeted and non-targeted strategies have been discussed presenting examples. Finally, considerations on the structural identification, one of the main challenges, are presented.
Great advances in lipidomics during the last years have opened the door to a broader knowledge of oxygenated lipids. These substances are derived either from the inclusion of previously hydroxylated fatty acids in the lipid structure of sphingolipids and acyl-L-carnitines, or by enzymatic and nonenzymatic modifications (oxidized lipids) of glycerophospholipids (including cardiolipins), cholesteryl esters and cholesterol. Despite their significance in the regulation of multiple diseases such as cancer or diabetes, the number of experimentally detected oxygenated lipids remains relatively low. This is in part due to the main challenges in their analysis, which are their low natural concentrations, their wide diversity of physicochemical properties, presence of isomers, and their a priori unknown presence in the biological samples. In particular, analysis of oxidized lipids, especially peroxides, has become a daunting task in liquid chromatography coupled to mass spectrometry (LC-MS) due to their high chemical and thermal instability, and the potential for further propagation of lipid oxidation and eventual degradation. The aim of this review is to highlight the experimental conditions on sample preparation procedures, the LC-MS based analytical approaches for identification and quantification of oxygenated lipids, and their relation as potential biomarkers in diseases based on the most relevant articles published in the last five years. Regarding sample preparation, special attention has been given to antioxidants, internal standards, extraction and concentration methods, and derivatization approaches. Moreover, targeted, semi-targeted and non-targeted strategies have been discussed presenting examples. Finally, considerations on the structural identification, one of the main challenges, are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.