Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
General climate changes and catastrophic environmental pollution cause the steadily increasing interest in the world to bio-based technical oils, including lubricants. In order that they bully comply with current environmental requirements, the additives added to them must not contain environmentally harmful components and provide the maximum thermal oxidation stability of the base oil. A significant disadvantage of zinc dialkyl dithiocarbamates and dialkyl dithiophosphates, which are widely used today as highly efficient polyfunctional additives, is that they contain ecotoxic organosulfur and organophosphorus components. In view of this, complexes of biometals with hydroxamic acids are promising. The paper presents the results of a study of the influence of MoO2L2, ZnL2, CuL2, MgL2 coordination compounds with N-methyldecanohydroxamic acid (HL) and mixtures of MoO2L2 with tert-butylcatechol and 2,6-di-tert-butyl-4-methylphenol (ionol) on the oxidation of distilled sunflower fatty acid methyl esters (one of the variants of biodiesel). Procedures for the synthesis of novel homoleptic Mg(II) and Zn(II) bis-hydroxamate complexes and their spectral characteristics are presented. The antioxidation properties of the complexes contained in the model solutions were determined by the method of oxygen absorption in a hermetically sealed system at 110 C. It has been found that the magnesium complex has no effect on the oxidation of the substrate, and that the copper complex decomposes, under experimental conditions, to metallic copper, which is an oxidation promoter. Zinc and molybdenum complexes exhibit antioxidation properties. It has been shown that ionol is an efficient co-component for MoO2L2, but no synergistic effect was detected. In view of the high tribological characteristics, the MoO2L2 complex is a promising prototype for the development of a polyfunctional eco-friendly additive to commercial biodisel-based lubricating compositions.
General climate changes and catastrophic environmental pollution cause the steadily increasing interest in the world to bio-based technical oils, including lubricants. In order that they bully comply with current environmental requirements, the additives added to them must not contain environmentally harmful components and provide the maximum thermal oxidation stability of the base oil. A significant disadvantage of zinc dialkyl dithiocarbamates and dialkyl dithiophosphates, which are widely used today as highly efficient polyfunctional additives, is that they contain ecotoxic organosulfur and organophosphorus components. In view of this, complexes of biometals with hydroxamic acids are promising. The paper presents the results of a study of the influence of MoO2L2, ZnL2, CuL2, MgL2 coordination compounds with N-methyldecanohydroxamic acid (HL) and mixtures of MoO2L2 with tert-butylcatechol and 2,6-di-tert-butyl-4-methylphenol (ionol) on the oxidation of distilled sunflower fatty acid methyl esters (one of the variants of biodiesel). Procedures for the synthesis of novel homoleptic Mg(II) and Zn(II) bis-hydroxamate complexes and their spectral characteristics are presented. The antioxidation properties of the complexes contained in the model solutions were determined by the method of oxygen absorption in a hermetically sealed system at 110 C. It has been found that the magnesium complex has no effect on the oxidation of the substrate, and that the copper complex decomposes, under experimental conditions, to metallic copper, which is an oxidation promoter. Zinc and molybdenum complexes exhibit antioxidation properties. It has been shown that ionol is an efficient co-component for MoO2L2, but no synergistic effect was detected. In view of the high tribological characteristics, the MoO2L2 complex is a promising prototype for the development of a polyfunctional eco-friendly additive to commercial biodisel-based lubricating compositions.
The review considers the main stages of development of the chemistry of coordination compounds at the Institute of General and Inorganic Chemistry. VI Vernadsky National Academy of Sciences of Ukraine on the occasion of the 90th anniversary of its founding. An overview of complex compounds of p, d, f-metals with different classes of ligands (inorganic and organic), features of their synthesis, study of the structure and properties of the obtained compounds, contains current material on the use of synthesized complexes to create functional materials for different purposes. Methods of synthesis have been developed, dozens of new coordination compounds with derivatives of hydrazones, amines, azomethanes, and thiosemicarbazones have been synthesized and isolated in the individual state. Their composition, structure and physicochemical properties are determined. The general regularities that take place in the process of complexation of metals with ligands, as well as factors influencing the composition, structure and physicochemical properties of the obtained coordination compounds are established. For the long history of the Institute has accumulated a huge amount of material on the problems of modern coordination chemistry. Significant research in this area belongs to Ukrainian scientists who have worked long and fruitfully at the Institute: A.K. Babko, К.B. Yatsimirsky, Ya.A. Fialkov, I.A. Sheka, S.V. Volkov, N.A. Kostromina, and who created scientific schools, known not only in Ukraine but also abroad. To date, the attention of scientists of the Institute has shifted from classical monomeric to bigeteronuclear, polynuclear, multiligand complexes, which is primarily due to intensive research of new functional materials: optical and magnetic, biologically active substances, as well as effective adsorbents, chemical sensors, catalysts, catalysts, catalysts and biochemical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.