Encapsulation has emerged as a vitally important tool for protecting the integrity of critical chemicals and improving the delivery mechanisms of natural/synthetic drugs, enabling the controlled release of ingredients and the maintenance of their chemical, physical, and biological properties. It is well known that essential oils (EOs) provide a valuable alternative for food preservation, as they help reducing the deterioration of foodstuffs as well as the proliferation of pathogens. Nevertheless, EOs are highly volatile and lipophilic, rendering them insoluble in aqueous systems. In addition, their secondary metabolites are extremely susceptible to environmental factors such as humidity, temperature, light, and oxygen. Therefore, encapsulation of EOs is an innovative option not only for preserving these substances but also for promoting their stability, controlling their release, and optimizing their efficiency and bioavailability. In this sense, this review aimed to describe current techniques and approaches used to incorporate natural hydrophobic compounds, covering EOs. It also examines whether encapsulation technology can be used efficiently in drug discovery and development. Studies have shown that microencapsulation, the use of nanoparticle, and liposomal are the most effective techniques for encapsulating EOs. Other encapsulation systems included spray drying, coacervation, and emulsification.