Corneal chemical burns (CCBs) frequently result in corneal fibrosis or haze, an opacity of the cornea that obstructs vision and induces corneal blindness. Diverse strategies have been employed to prevent or reduce CCB-related corneal haze. In this study, we evaluated the physicochemical characteristics and biologic effects of a topical pirfenidone (PFD)-loaded liposomal formulation (PL) on a corneal alkali burn mice model. We found that PL was appropriate for ocular application due to its physiologic tear pH, osmolarity and viscosity suitable for topical ophthalmic use. Regarding its therapeutic activity, PL-treated mice had significantly reduced haze size and density, corneal edema, corneal thickness, and corneal inflammatory infiltration, in contrast to PFD in aqueous solution (p < 0.01). Importantly, the antifibrotic activity of PL (reduction of corneal haze) was associated with modulation of transforming growth factor (TGF)-β and Interleukin (IL)-1β genes. PL suppressed TGF-β expression and restored normal IL-1β expression in corneal tissue more efficiently in contrast to PFD in aqueous solution. In conclusion, PFD showed essential anti-inflammatory and anti-fibrotic effects in the treatment of alkali burns. Noteworthy, a new formulation of PFD-loaded liposomes remarkably improved these effects, standing out as a promising treatment for corneal haze.