Abstract:We study outer Lipschitz geometry of real semialgebraic or, more general, definable in a polynomially bounded o-minimal structure over the reals, surface germs.In particular, any definable Hölder triangle is either Lipschitz normally embedded or contains some "abnormal" arcs. We show that abnormal arcs constitute finitely many "abnormal zones" in the space of all arcs, and investigate geometric and combinatorial properties of abnormal surface germs. We establish a strong relation between geometry and combinato… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.