Blind Image Quality Assessment (BIQA) aims to simulate human assessment of image quality. It has a great demand for labeled data, which is often insufficient in practice. Some researchers employ unsupervised methods to address this issue, which is challenging to emulate the human subjective system. To this end, we introduce a unified framework that combines semi-supervised and incremental learning to address the mentioned issue. Specifically, when training data is limited, semi-supervised learning is necessary to infer extensive unlabeled data. To facilitate semi-supervised learning, we use knowledge distillation to assign pseudo-labels to unlabeled data, preserving analytical capability. To gradually improve the quality of pseudo labels, we introduce incremental learning. However, incremental learning can lead to catastrophic forgetting. We employ Experience Replay by selecting representative samples during multiple rounds of semi-supervised learning, to alleviate forgetting and ensure model stability. Experimental results show that the proposed approach achieves state-of-the-art performance across various benchmark datasets. After being trained on the LIVE dataset, our method can be directly transferred to the CSIQ dataset. Compared with other methods, it significantly outperforms unsupervised methods on the CSIQ dataset with a marginal performance drop (-0.002) on the LIVE dataset. In conclusion, our proposed method demonstrates its potential to tackle the challenges in real-world production processes.