At least 32 case histories have shown that liquefaction can occur in gravelly soils (both natural deposits and manmade reclamations) during severe earthquakes, causing large ground deformations and severe damage to civil infrastructures. Gravelly soils, however, pose major challenges in geotechnical earthquake engineering in terms of assessing their deformation characteristics and potential for liquefaction. In this study, aimed at providing valuable insights into this important topic, a series of isotropically consolidated undrained cyclic triaxial tests were carried out on selected sand–gravel mixtures (SGMs) with varying degrees of gravel content (Gc) and relative density (Dr). The pore water pressure generation and liquefaction resistance were examined and then further scrutinized using an energy-based method (EBM) for liquefaction assessment. It is shown that the rate of pore water pressure development is influenced by the cyclic resistance ratio (CSR), Gc and Dr of SGMs. However, a unique correlation exists between the pore water pressure ratio and cumulative normalized dissipated energy during liquefaction. Furthermore, the cumulative normalized energy is a promising parameter to describe the cyclic resistance ratio (CRR) of gravelly soils at various post-liquefaction axial strain levels, considering the combined effects of Gc and Dr on the liquefaction resistance.