Background
Marine geological disasters (i.e., catastrophic events occurring in marine environments) may seriously threaten the safety of engineering facilities, life, and property in shallow- and deep-sea areas. The development of marine resources and energy and the protection of the marine geo-environment are topics of intense interest globally, and these activities inevitably require the assessment of marine geological disasters, which are receiving increasing attention from academic and industrial communities. However, as a prospective analysis for the risk assessment and management of marine geological disasters, the susceptibility of marine geological disasters, referring to a qualitative or quantitative description of the type, volume (or area), and spatial distribution of existing or potential geological disasters, is still in the exploration stage.
Results
In this study, we systematically combine the theoretical basis and methods for the analysis of the susceptibility of marine geological disasters (i.e., heuristic approach, deterministic approach, and statistical approach). Taking two widely studied marine geological disasters (i.e., seabed liquefaction and submarine landslides) as examples, we review their triggering mechanism, condition factors, methodological advances, and susceptibility maps. Subsequently, some challenges in the susceptibility assessment of the marine geological disasters associated with seabed liquefaction and submarine landslides and extension to other types of marine geological disasters are briefly summarized and discussed, involving an incomplete evaluation system, poor applicability of methods, and insufficient databases.
Conclusion
Based on a literature review using the extensive literature database, we focused on the susceptibility of two typical marine geological disasters (i.e., seabed liquefaction and submarine landslides) and systematically summarized the development history, methods, results, problems, and future directions. According to the challenges of this field, we recommend that relevant organizations focus on the construction of a susceptibility system and study the triggering mechanisms of marine geological disasters. Long-term in situ observation efforts should also be supported to obtain more data to improve the disaster inventory. Ultimately, more reliable methods can help improve the credibility and usefulness of susceptibility analysis results.