Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: The insertion of topical antimicrobials in wound treatment represented an important role in patient management. Among these agents, silver sulfadiazine (AgSD), introduced in the therapy of wounds and burns in the 1960s, is considered the gold standard in treatment due to its mechanism of action, in addition to its proven efficacy and safety. The association of AgSD with polymers for the development of curative formulations has been reported. The evaluation of the physical-chemical properties of these systems with the aid of analytical techniques of characterization is essential for the determination of their activities, besides allowing the detection of possible incompatibilities between AgSD and polymers. Objective: Thus, this review presents the main techniques of physicochemical characterization used in the evaluation of systems containing AgSD with curative purposes in order to provide parameters to ensure the efficacy and safety of these new therapeutic options. Results: Microscopic, thermoanalytical, and spectroscopic techniques, for example, provide information on system properties such as surface chemical composition, crystallinity, morphology, and thermal stability of curative formulations containing AgSD. Conclusion: These techniques are important in the selection of the most appropriate techniques during the development of a polymeric curative system containing AgSD, in addition to providing information for cost reduction of a possible scale-up and the establishment of methodologies for quality control of these systems to ensure their efficacy and safety.
Background: The insertion of topical antimicrobials in wound treatment represented an important role in patient management. Among these agents, silver sulfadiazine (AgSD), introduced in the therapy of wounds and burns in the 1960s, is considered the gold standard in treatment due to its mechanism of action, in addition to its proven efficacy and safety. The association of AgSD with polymers for the development of curative formulations has been reported. The evaluation of the physical-chemical properties of these systems with the aid of analytical techniques of characterization is essential for the determination of their activities, besides allowing the detection of possible incompatibilities between AgSD and polymers. Objective: Thus, this review presents the main techniques of physicochemical characterization used in the evaluation of systems containing AgSD with curative purposes in order to provide parameters to ensure the efficacy and safety of these new therapeutic options. Results: Microscopic, thermoanalytical, and spectroscopic techniques, for example, provide information on system properties such as surface chemical composition, crystallinity, morphology, and thermal stability of curative formulations containing AgSD. Conclusion: These techniques are important in the selection of the most appropriate techniques during the development of a polymeric curative system containing AgSD, in addition to providing information for cost reduction of a possible scale-up and the establishment of methodologies for quality control of these systems to ensure their efficacy and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.